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Annotation: The initial value problem of solvability and construction of
solutions of a nonlinear Fredholm integro-differential equation of first order with
degenerate kernel and nonlinear maxima are considered. Using the method of
degenerate kernel in combination it with the method of regularization, we obtain an
implicit functional-differential equation of first order with nonlinear maxima. We use
initial boundary conditions to ensure the uniqueness of the solution. In order to use
the method of a successive approximations and prove the one value solvability, we
transform the obtained implicit functional-differential equation to the nonlinear
Volterra type integro-differential equation with nonlinear maxima. The one value
solvability of the problem is proved.
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Formulation of the problem

Integro-differential equations as integral and differential equations are
mathematical models of the many physical processes and the operation in technical
systems. In application of integro-differential equations the analytical and iterative
methods play an important role [1-8].

In this paper, we study the initial value problem of one value solvability and
construction of solutions of a nonlinear Fredholm integro-differential equation of first
order with degenerate kernel and nonlinear maxima. When a kernel of integral is
degenerate, it is easy to replace the given equation by implicit differential equation,
which is convenient to transform into Volterra integro-differential equation for
solving by the method of successive approximations. The integral and integro-
differential equations with degenerate kernels were considered by many authors (see,
for example [9-21]).
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So, in our paper, using the method of degenerate kernel in combination it with the
regularization method, we obtain an implicit functional-differential equation with
nonlinear maxima. As you know, Fredholm functional integro-differential equation of
first kind is ill-posed. So, we use initial boundary conditions to ensure the uniqueness
of the solution. In order to use the method of a successive approximations, we
transform the implicit functional-differential equation to the nonlinear Volterra type
functional integro-differential equation, which is ill-posed, too. The one value
solvability of this problem we have proved by the given initial boundary conditions.

On the segment [0;T] the following nonlinear Fredholm integro-differential
equation of first kind and first order is considered

ﬂ]K (t,s) F(s,u(s),max{u(r) Iz e[hl(s,u(s));hz(s,u(s))]},jR(e)U(e)d de s =
=f () 1)

under the following conditions
u(0) = ¢,, =const,

u (0) = ¢, = const,
u(t) = ¢, (t), t e[-hy,;0],

u(t) =, (1), te[T;T +hy,],
where O<T is given real number, A is nonzero parameter of marching,

()

F(t,u,v,9) eC ([O;T]x X x X x X), h. (t,u) eC ([0;T ]x X),

—h,, <h, (t,u) <h, (t,u) <T +h,,, 0<h, =const, =12, O<jR(s)ds<oo,
k

¢l(t) GC[_hm;o]’ (Dz(t) eC[T;T + hoz]’ K(t,s) :Zai (t)bi (s),
i=1

O0=a,(t),b,(s)eC[0;T], X isclosed seton real number set. Here it is assumed that
each of the systems of functions a;(t), i=1,k, and b, (s), i=1,k, linearly
independent, ¢,(0) = ¢, ¢,(T) =u(T).

Method of degenerate kernel

Taking into account the degeneracy of the kernel, equation (1) is written in the
following form

A]_Zk:ai (t)b, (s) F(s,u(s),max{u(r)l T e[hl(s,u(s)); hz(s,u(s))}},jR(e)U(e)d H}d S=

o i=l
= f(b). @)
Using the notation



9(t) = F{t,u (t),max{u(r)| r e[hl(t,u(t));hz(t,u(t))]},jR(s)u(s)d s]

and introducing new unknown function 4 (t), we obtain from (3) approximation

Fredholm second kind integral equation with small parameter

£ (t) = f (t) —z]iai (t)b.(s)9 (s)ds,

o i=1
where
Iirrolgg (t) =3(1),

0 < ¢ is small parameter.
Using the new notation
a, :] b, (s)4. (s)ds,
the integral equation (5) can be rewritteon as follows

9. :ﬂf (t)—ﬂ,zk:ai e, }

Substituting (8) into (7), we obtain the system of linear equations (SLE)
k -
a;+A) a; A =B;, i=1k,
j=1
where
17 17
Aj==[ Db (s)a;(s)ds, B;==] b, (s) f(s)ds.
3 0 & 0

Consider the following determinants:

1+ AA, A, Ce A,
e A LtAAn o A |
AL AL . 1eaA,
1+4AA; .. Al(i—l) B, Al(i+1) Ay
A (4) = Ay A2(i—1) B, A2(i+1) Ay i :ﬁ
A, Ak(i_l) B, Ak(i+1) . 1+ AA,,

—~

4)

()

(6)

(7)

(8)

©)

(10)

(11)

SLE (9) is uniquely soluble for any finite right-hand sides, if the nondegeneracy
condition (11) of the Fredholm determinant is fulfilled. The determinant A(2) in (11)

is a polynomial with respect to A4 of degree not higher k. The equation A(1)=0 has
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at most k different real roots. We denote them by 4, (I1=1,p,1<p<k). Then A=,

called irregular values of the second spectral parameter A. Other values of the
spectral parameter 1= ., are called regular. The solutions of SLE (9) for regular

values of parameter A are written as

ai:A‘—(’D, i=1k. (12)
A1)
Substituting (12) into (8), we obtain
3. ()= —{ f(t)- lZ_: (1) A((/l))} (13)
By virtue of formula (10), we suppose that
f(t):/lzk:ai (t)c,, ci—/lAi—M):gCi, (14)
= A1)

where c;,C. =const, i=1Kk.

The parameter A is marching parameter between free term function f (t) and kernel

of integral equation (1). So, we choose one of the regular values of the parameter A
such that the first of condition (14) is fulfilled. Then, taking into account limit
passing formula (6), from (13) we obtain

9 = 2Y.C,a,0) (15)

Now the function 9(t) is known and defines by the formula (15). So, we solve the
implicit functional equation (4). We rewrite this implicit equation as

t
G(t,u(t),max{u(r)l r e[ hy(tu(R);h,(tu (t))]},jR(s)u (s)d SJ -0 (16)
0
with given conditions (2), where G=F — 9.
Transform into nonlinear Volterra type integral equation

In solving the implicit functional equation (16) we use the method of successive
approximations in combination it with the method of compressing mapping.
However, it is impossible to directly apply the method of successive approximations
to the equation (16) with nonlinear deviation. Therefore, in this work we propose the
following method. On the segment [0; T ] we take arbitrary positive defined and

continuous function K, (t). We introduce the notation

w(t,s) = [Ky(0)d0, y(t.0) =y (1), te[0;T].

It is obvious that y(t,s) =y (t) —w(s). By the solution of equation (1) we mean a
continuous function u(t) on the segment [O;T ] that satisfies equation (1) with the
given conditions (2) and the Lipschitz condition:
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max {[[u(t) —u(s) |; u) —u(s) [} < Ly [t—s], (17)

where 0< L, =const, |u(t) H:@?T(\u(t)\.

We write the implicit equation (16) as

u(t) +jK0(s)U(s)ds =U(t) +jK0(s)U(s)ds+

+G[t,u(t),max{u(r)|re[hl(t,u(t));hz(t,u(t))]},jR(s)u(s)d sj, t e[0;T].

Hence, using resolvent of the kernel [-K(s)], we obtain
u(t) = u(t) +

+j KO(S)U(s)ds+G(t,u(t),max{u(r)| r e[hl(t,u(t));hz(t,u(t))]},jR(s)u(s)d s}+
+j K, (s)exp{-w(t, s)}{—U(s) It j K,(0)u(0)do —
_G(s,u (s), max{u ()l 7 €| hy(s,u(s));h,(s,u (s))]},jR(@)u’ 6)d 6’]}d s.  (18)

Appling Dirichlet’s formula to (18) (see [21]), we derive the following Volterra type
nonlinear functional-integro-differential equation

u(t)=sl(t;u)sz(t,s)u(s)ds+exp{—w<t)}x
X{U(t) +G[t,u(t),max{u(r)| re[hl(t,u(t));hz(t,u(t))]},jR(s)u’(s)d s]:|+
+E Ko(s)exp{-y(t, )} {u(t) - u(s) +
+G[t,u(t),max{u<r)|re[hl(t,u(t»;hz(t,u(t))]},iR(s)u(s)d s]—

_G(s,u (s),max{u (z)] z [ hy(s,u (s));h, (s, (s))]},jR(&)u (6)d 6’]}d s, (19)
where
H (t,s) = Ky(s)exp{-w(t,s)} —.[KO(H) exp{-y(t,0)}do. (20)

By integrating functional-integro-differential equation (19) on the interval
(0;t) with initial condition u(0) = ¢,, we obtain the following functional-integro-

differential equation
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u(t) =3, (t;u) E¢Ol+.t[(t —S)H (t,s)u(s)ds +

t

+I{U(s)+G£s,u(s),max{u(r)| re[hl(s,u(s));hz(s,u(s))]},jR(e)u(49)d eﬂx

0

xexp{—y(s)}ds + j (t—s)Ky(s)exp{—w(t,s)}{u(t) —u(s) +
+G[t,u(t),max{u(r)| r e[hl(t,u(t));hz(t,u(t))]},jR(s)u(s)d sj—
_GLS,U (s), max{u ()] 7 €[ hy(s,u(s)):h, (s, (s))]},jR(@)u 0)d ej}d s, (21)

Remark. The nonlinear functional-integro-differential equations (19) and (21) are ill-
posed [Non2], so we will study it with given conditions (2). In addition, we consider
the conditions (2) as u(t—0)=u(t+0) at the points t=0and t=T.

Let be fulfilled the conditions (11) and (14). Then, instead of the Fredholm
functional-integro-differntial equation of first kind (1) we will study the Volterra type
functional-integro-differential equations (19) and (21) with conditions (2).

Theorem. Let be fulfilled the conditions (17) and
1). |G(tut).v(t).9(1)| <M, 0<M,=const;
2). |G (t,uy (0.0, 9, (1)~ G (£, u, O, (1), 4,0 | <

< |—1(t)(‘ Ul(t) —U, (t) "" ‘ Vl(t) _Vz(t) ‘ + ‘ ‘gl(t) o :92('[) D’

3). \ h, (t.u,(@®)-h, (t,uz(t))‘g L, (0)|u,® —u,(®)], 0<L,(t)eC[0;T],i=12

4). p <1, where p:%@g[ﬂ(t) + P, (1) +V, (1) +V, ()],
R(t) =L )] 2+ Ly (L, (1) + L, (1) |Q(t,0),
P, (t) = jQ(t,s) ds +£1+ Ll(t)j‘R(s) dsz(t,O),

Q(t,s) =exp{-w(t)}+ 2_[ Ko (s) -exp{-w(t,s)}ds;

V, (1) = L (1) 2+ Ly (L, (1) + L, (1)) |Q(1),
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V, (1) = j(t —5)Q(t,s)ds +{1+ Ll(t)jR(s)ds]Q(t),
Q(t) = [exp{-y(s)}ds+2[ (t - 5)K(s)exp{-y(t,5)} ds.

Then the nonlinear functional-integro-differential equation (21) with conditions (2)
has a unique solution on the segment [0;T ].

Proof. We suppose that Picard iteration process for functional-integro-differential
equations (19) and (21) is given by

Uo(t) =@, t€[0T] U, () =T, (t0,), neN, te[0T], (22)
U, (t) = ¢ (1), t e[-h;; 0], U, (t) =g, (t), te[-h;0],
uo(t):(DOl’ tE[O,T], un+1(t):SZ(t;un)’ ne N! t€[01T]’ (23)

U, () =, (), te[T;T +h,], [u,,(t)=¢,(), te[T;T +h,],
First, we take estimate for the function H(t,s), given by formula (20):

|H(t,s) | <K, (s)-exp{-w(t,s)} + ZJ Ko (0)exp{-w(t,0)} dO=Q(t,s).  (24)

It is obvious that the following estimate is true

4o <] g | <o0. (25)
[ us(®)] < max{\ P \:_ngggo\col(t)\gg;%jqoz(t)\}=Ao <. (26)

By virtue of conditions of theorem and Picard processes (22) and (23), by using
estimates (25) and (26), for the first approximations we obtain the estimates

|u, ()] < [ H.5) || uo(s) || ds + expf-w ©)}

x[Huo(t) H+

G[t,uo(t),max{uo(rﬂ Te[hl(t,uo(t));hz(t,uo(t))]},jR(s)uo (s)d s)

]+

G [t’uo(t)’ max{uo(r)| 4 e[hl(t’uo(t)); hz(t’uo(t))]}ajR(s)uo (s)d SJ

+j Ko(s)exp{-w(t,s)}

x[Huo(t)—uo(s) |+2

}ds

<| 9| [ Q(t, 8) A5 + (| 55| + M ) - exp{—p (1)} +
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+j Ko (s)-exp{-w(t,5)}(Ly|t—s|+2M, )ds <

<[ | [Q(t.5)ds +A,Q(t,0), 27)

where
Ayy =max{] gp,|+ Mg LT +2M,};

|, ()] <Ay + j | =s)H(t,5) ] u,s(s) |ds+ j exp{—y/(s)}[H u,(s) [+

+

G[s,uo(s),max{uo(rﬂ r e[hl(s,uo(s));hz(s,uo(s))]},jR(H)u‘o(e)d 9]

}ds+

+(t=5)Ky(s)exp (- (t.9)} o (1) ~t(s) | +

+2 G(t,uo(t),max{uo(mfe[hl(t,uo(t));hz(t,uo(t))]},jR(s)u(s)d s} }dss
<Ay +| @oz‘i(t —$)Q(t,5)ds + (| 5, | + Mo)ieXp{—l//(S)}dS +
+j(t—S)KO(S)-exp{—c//(t,s)}(Lo\t—S\+2M0)dss
<A+ %z\j(t —9)Q(t,s)ds +A,,Q(b), (28)
where

Q) = [exp{-y(s)}ds +2[ (t - s)K,(s)exp{-w(t,5)} ds.

By virtue of first and second conditions of theorem, analogously to estimates (27) and
(28) for arbitrary difference of approximations we have

‘ l"In+1(t) - L:In (t) ‘ < IH H (t1 S) H H l'.In(s) - un—l(s) HdS +
+exp{-w O | 4,0 ~ 0,0 |+ LO(u,© —u,, O |+
+| max{u,(0)17 e[ hytu, ©):h,(tu, ©) ]} -

—max{u ()] 7 €[ 1y (U, @)y (U, @) ]|+ [RE,6) U, 1(5) Hdsj}



+2[ Ky(8)exp - (t,9)}] 0,(8) U, 6) [+ Li(s) (|, () ~y1(8) | +

+H max{un(r)l T e[hl(s,un(s)); hz(S,un(s))]} _
_max{un_l(f)lre[hl(s,un_l(s));hz(s,un_l(s))]} H+

+[RO)]8,0)-0,,0)]¢ Hﬂ ds (29)

To continue estimate the norm in (29) we use condition (17) and third condition of
the theorem. Then we have

| max{u, (@)1 = € hy(s,u, ()i (s.u, () ]} -
—max {u,,(7)] 7 €[ hy(5,U, 1 ()i (s.u 1 () | <
sH max {u, ()| 7 €[ hy(s,u, ($):h, (5., () ]} -
—max {u,,(7)] 7 [ hy(s,u, () hy (., (N Jf | +
+H max {u,, (7)) z €[ hy(s,u, () h,(s.u,(5) ]} -
—max {u,,(7)] 7 €[ (5., 1 ()i (5.U, 1 () | <
< H max { [u, (r) ~ U, ,(2) |7 [ hy(,u,(8)); N, (s,u, () ] H+

+L0i\\ h, (5,U,(5)) = h; (5,U,4(5)) | <

<[1+ L (Lu(8) + Lo (9)) ] un(8) U 9| (30)
Substituting (30) into (29), we obtain

[0 ()~ U, ()| < [Q(t,5)] U, (5) ~t, ,(5) [ ds + exp{y ()}

+

{Ll(t)[m Lo (Lo () + Ly ) ] U, ()~ u, 4 H{H L[ R(s)ds]u 0, ()~ U, , () @
12[ Ky (8)-exp{—y (t.9)}[ LG)[ 2+ Lo (L (8) + Lo (8)) ] U (8) ~ U, 1 (8) | +

+(1+ Ll(s)jR(ﬁ)dé?JH u (s)—u_,(s) @ds <

<B®)|u,®) —u, @) | +P,@)]u, @) -u,., )], (31)
where

R®=LM[2+ L (Ly® + L, (1) ]Q(t.0),



where

Ry (t) = jQ(t,s)ds +{1+ Ll(t)jR(s)ds}Q(t,O),

Q(t, ) = exp{-y (1)} +2[ Ky (s) -exp{—y (t,5)} ds;

0, U, )] < ia ~5)Q(t,9)]U,(5) U, (8 [ds +
+iexp{—w(s>}[u(s>[2 + Ly (Laa(8) + Lio(8) Uy (8) — Uy (8) | +
+[1+ Ll(s)jR(e)de}H u (s)—u_,(s) Hd S+
+2} (t—5)Ko(s) -exp{-y(t,5)} x
x[L1<s>[2+OLO(L21(s) +L,5(8)) ][ U () ~ U4 (8) | +

+[l+ Ll(s)_t[ R(s) ds}” u (s)—u_,(s) H:lds <

<V, (0)] U, (©) — U, 5 () |+ V5 O] 0, () — 1,5 (0 ],

Vi(t) = L (1) 2+ Lo (L () + Ly (8)) |QQ),
V,(t) = j(t —3)Q(t,s)ds + [1+ Ll(t)j R(s) ds]Q(t),

Q(t) = j exp{—y(s)}ds +2 j (t—S)Ky(s)exp{—w(t,s)) ds.

From the estimates (31) and (32) follows that

where

HUn+1(t) _Un(t) H SIOHUH(t) _Un—l(t) H’

|U,.. ) =U, () || < max{]| u,., ) —u, @) | | 4,.. ) —u, @) |},

p=2max [P0+ PO+O) +V,(0]

In choosing the function K,(t) we take into account that

Hence, we obtain that exp{—w (t)}[1 1. So, the functions H(t,s) and Q(t,s) are

z//(t,s)zjKO(H)dé?D 1, te[0:T].
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small. Then the functions L, (t), L, (t), i =12 we can choose such that p <1 and

last condition of the theorem is fulfilled. We consider the solution of the integral
equations (19) and (21) in the space of continuous functions C[0;T], satisfying

condition (17). Since |u,,,(t) —u,(®)||<[|U,.,.@) U, ()|, it follows from the estimate

(33) that the integral operator on the right-hand side of (21) with conditions (2) is
compressing mapping. So, from the estimates (25)--(28) and (33) implies that the
integral equation (21) with conditions (2) has a unique solution on the segment [0;T].

The theorem is proved.
Conclusion

In this paper, we studied the problems of one value solvability and construction of
solutions of a nonlinear Fredholm first kind functional integro-differential equation
(1) of first order with degenerate kernel and nonlinear maxima. This Fredholm
functional-integro-differential equation is ill-posed. So, we use boundary conditions
(2) to ensure the uniqueness of the solution. First, using the method of degenerate
kernel, we obtained the implicit functional-differential equation (16). In order to use
the method of a successive approximations we reduce the implicit functional-
differential equation (16) with nonlinear maxima to the nonlinear Volterra type first
order functional integro-differential equation. So, the feature of this paper is such that
first kind nonlinear Fredholm functional integro-differential equation (1) was
replaced by the Volterra type functional integro-differential equation (21).

The nonlinear functional integro-differential equation (21) we conditionally called as
a second kind Volterra type nonlinear functional integro-differential equation of first
order. Because this Volterra type integro-differential equation (21) is ill-posed, too.
So, we studied it by the given conditions (2). In addition, in the conditions (2) we
suppose the continuous gluing conditions that u(t —0) =u(t +0) at the points t=0

and t=T.

Let be fulfilled the conditions (11) and (14). Then, instead of the first kind Fredholm
functional integro-differential equation of first order (1) we will study the second
kind Volterra type functional integro-differential equation of first order (21) with
conditions (2). The theorem of one value solvability of the problem (1), (2) was
proved.
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