ТЕРМОМАГНИТНАЯ НЕУСТОЙЧИВОСТЬ В СВЕРХПРОВОДНИКАХ ІІ-РОДА

Тайланов Низом Абдураззакович

Джизакский государственный педагогический институт, Джизак, Узбекистан e-mail:nizom@mail.ru

Аннотация. Проведено теоретическое исследование процесса развития термомагнитной неустойчивости типа скачка магнитного потока в сверхпроводнике ІІ-рода, находящегося в плоском полубесконечном образце в рамках модели критического состояния Вина.

Ключевые слова: термомагнитная неустойчивость, критическое состояние, вязкое течение потока.

II tur o'ta o'tkazgichlarda termomagnetik berqarorlik

Annotatsiya. Tekislik yarim cheksiz namunada joylashgan II turdagi o'ta o'tkazgichdagi magnit oqimning termomagnit beqarorligi rivojlanishini nazariy o'rganish kritik holat modeli doirasida amalga o'ranildii.

Kalit so'zlar: termomagnit begarorlik, kritik holat, oqim.

Thermomagnetic instability in a type-superconductors

Abstract. A theoretical study of thermomagnetic instability such as a jump in magnetic flux in a type II superconductor located in a plane semi-infinite sample is carried out within the framework of critical state model.

Key words: thermomagnetic instability, critical state, viscous flow.

Хорошо известно, что термомагнитная неустойчивость типа скачка магнитного потока в сверхпроводниках обусловлена взаимодействием тепловых и электромагнитных малых возмущений. Такой скачок, как правило, приводит к переходу сверхпроводника в нормальное состояние [1]. Явление термомагнитной неустойчивости критического состояния или скачка магнитного потока было обнаружено как в низкотемпературных [1-6], так и высокотемпературных сверхпроводящих образцах [7, 8]. динамика устойчивости критического состояния по отношению к скачкам магнитного потока в жестких и композитных сверхпроводниках была обсуждена в теоретических и экспериментальных работах [1-5]. Общая концепция устойчивости критического состояния в сверхпроводниках - ІІ рода была развита в литературе [4, 5]. В работе [5] изучена динамика развития малых тепловых и электромагнитных возмущений и соответствующие условия

устойчивости критического состояния в сверхпроводниках в режиме вязкого устойчивости критического динамика сверхпроводниках в режиме крипа потока с нелинейной вольтамперной характеристикой была рассмотрена в [10, 11]. В нашей предыдущей работе динамика малых тепловых и электромагнитных возмущений была изучена в рамках модели вязкого течения потока. где вольтамперная характеристика сверхпроводника линейна в достаточно больших значениях электрического поля [9]. Однако, малоисследованным остается вопрос о динамике развития малых термомагнитных возмущений в режиме крипа потока с нелинейной вольтамперной характеристикой сверхпроводника. Целью настоящей работы является теоретическое изучение динамики пространственного и временного И электромагнитных распределения тепловых возмущений сверхпроводнике в режиме крипа потока. Как известно, для моделирования процесса эволюции возмущений температуры и электромагнитного поля в сверхпроводниках ІІ-рода широко используется система дифференциальных макроскопической электродинамики [4, 5]. При уравнений ЭТОМ распределение магнитной индукции и транспортного тока в сверхпроводнике определяются следующим уравнением

$$rot\vec{B} = \mu_0 \vec{j} \tag{1}$$

Взаимосвязь между магнитной индукцией \vec{B} и электрическим полем \vec{E} устанавливается уравнениями Максвелла

$$rot\vec{E} = \frac{d\vec{B}}{dt}$$
 (2)

Соответственно, распределение температуры в образце определяется уравнением теплопроводности

$$v(T)\frac{dT}{dt} = \nabla[\kappa(T)\nabla T] + \vec{j}\vec{E}$$
 (3)

где v и κ - коэффициенты теплоемкости и теплопроводности образца, соответственно. Зависимость j(E,T,B) определяется следующим уравнением критического состояния

$$j = j_C(T, B) + j(E)$$

Далее, получим решение системы уравнений (1)-(3) в предположении, что критическая плотность тока не зависит от индукции магнитного поля В и воспользуемся моделью Бина

$$j_{\rm C} = j_{\rm C}(B_{\rm e}, T) = j_0 - a(T_{\rm C} - T_0)$$

где B_e - значение внешней магнитной индукции; $a = \frac{j_0}{T_C - T_0}$; j_0 - равновесная плотность тока, T_0 и T_C - начальная и критическая температура образца, соответственно [5]. Систему дифференциальных уравнений (1)-(3) следует дополнить вольтамперной характеристикой сверхпроводника j(E). В режиме крипа потока вольтамперная характеристика сверхпроводников существенно является нелинейной, обусловленной тепло-активационным движением вихрей [12, 13]. Зависимость j(E) в режиме крипа потока описывается выражением [12]

$$j = j_{\rm C} \left[\frac{E}{E_0} \right]^{1/n} \tag{4}$$

где E_0 - значение напряженности электрического поля при $j=j_C$ [5]; постоянный параметр п зависит от механизмов пиннинга [12]. В случае, когда n=1 соотношение (4) описывает вязкое течение потока [14]. При достаточно больших значениях n, последнее равенство определяет критическое состояние Бина $j \propto j_c$ [1]. Когда $1 < n < \infty$, соотношение (4) описывает нелинейный крип потока [15]. В этом случае дифференциальная проводимость определяется равенством

$$\sigma = \frac{d\vec{j}}{d\vec{E}} = \frac{j_C}{nE_B} \tag{5}$$

Согласно равенстве (5) дифференциальная проводимость нарастает с увеличением фонового электрического поля E_B и существенно зависит от значения скорости изменения магнитной индукции согласно равенству $E_B \propto \dot{B}_E x$. Следовательно, критерий устойчивости также зависит от значения дифференциального сопротивления σ . Для типичных значений $j_1 = 10^3$ A/cm², $E_B = 10^{-7}$ V/cm мы имеем $\sigma = 10^{10}$ 1/ Ω cm. Откуда следует, что [6, 7] дифференциальная проводимость имеет определяющей роль при определении устойчивости критического состояния и динамику развития малых тепловых и электромагнитных возмущений в сверхпроводнике.

Сформулируем основные уравнения, описывающие динамику развития тепловых и электромагнитных возмущений для простого случая сверхпроводящего плоского полубесконечного образца x>0. Предполагаем, что внешнее магнитное поле $B=(0,\ 0,\ B_e)$ направлено по оси z и скорость магнитного поля является постоянной $B_e=$ const. Согласно уравнению Максвелла (2), в образце имеется вихревое электрическое поле $E=(0,\ E_e\ ,0)$. Здесь E_e амплитуда фонового электрического поля. Из концепции критического состояния непосредственно следует параллельность плотности тока и электрического поля $\vec{i} \cap \vec{E}$.

Для такой геометрии пространственное и временное распределения малых тепловых T(x, t) и электромагнитных возмущений E(x, t) описываются следующими уравнениями

$$v\frac{d\Theta}{dt} = \kappa \frac{d^2\Theta}{dx^2} + j_c \varepsilon \tag{6}$$

$$\frac{d^2 \varepsilon}{dx^2} = \mu_0 \left[\frac{j_c}{nE} \frac{d\varepsilon}{dt} - \frac{dj_c}{dT} \frac{d\Theta}{dt} \right]$$
 (7)

Представим решение системы (6), (7) в виде

$$\delta T(x,t) = (T_c - T_0)\Theta(z)e^{\gamma t/t_0}$$
(8)

$$\delta E(x,t) = E_c \varepsilon(z) e^{\gamma t/t_0}$$
(9)

где γ подлежащее определению собственное число задачи. Из последней системы уравнений видно, что характерное время развития тепловых и электромагнитных возмущений порядка t_0/γ . Мы ввели следующие обозначения

$$t_0 = \frac{\sigma v (T_c - T_0)}{j_c^2}, \quad z = \frac{x}{l}, \quad l = \frac{v (T_c - T_0)}{\mu_0 j_c^2}$$

Наибольший практический интерес представляет адиабатический случай, когда τ <<1, i.e., диффузия магнитного потока происходить быстрее, чем развития малых тепловых возмущений [4, 5]. Это позволяет существенно упростить процедуру получения критерия устойчивости сверхпроводящего состояния в образце. В этом приближении, решая систему уравнений (6), (7)

можно получить следующее дифференциальное уравнение для распределения электромагнитного поля

$$\varepsilon = \frac{n\Theta}{T_c - T_0} \varepsilon$$

Подставляя последнее решение в уравнение теплопроводности, получаем в квазистационарном приближении [5] следующее уравнение

$$z\frac{d^{2}\varepsilon}{dz^{2}} = \gamma \frac{j_{c}}{n \sigma \dot{B}_{c}} \varepsilon - z \varepsilon \tag{10}$$

Так как, при выводе последнего уравнения мы пренебрегли тепловыми эффектами, лишь электродинамические граничные должны быть поставлены в (10)

$$\varepsilon(1,t) = 0, \quad \frac{d\varepsilon(0,t)}{dt} = 0. \tag{11}$$

Критерий неустойчивости фронта потока определяется с положительными значениями $\text{Re}\gamma \ge 0$.

Решение уравнения (10) можно представить в следующем виде

$$\varepsilon(z) = c_1 W_{\frac{iz}{2}, \frac{1}{2}}(2iz) + c_2 W_{-\frac{iz}{2}, \frac{1}{2}}(-2iz)$$
 (12)

Где W - функция Уитеккера, постоянные интегрирования c_1 и c_2 определяются из электродинамических граничных условий (11). После несложных преобразований получим следующий критерий неустойчивости

$$B_{c} = \frac{4\pi j_{c}}{c} \sqrt{\frac{\kappa (T_{c} - T_{0})}{j \ n\dot{B}_{e}}}$$

Легко увидеть, что пороговое значение B_c термомагнитной неустойчивости, в основном зависит от вида фонового электрического поля, инициированного изменением внешней магнитной индукции $E_b \approx B_e$. Значение поля B_c монотонно уменьшается с ростом скорости индукции внешнего магнитного поля по образцу [16, 17].

Заключение

Таким образом, линейного на основе анализа системы дифференциальных уравнений распределения ДЛЯ температуры И электромагнитного поля было показано, что при определенных условиях термомагнитной неустойчивости возможно возникновение В сверхпроводнике. Пороговое значение термомагнитной неустойчивости, при основном зависит от вида фонового электрического индуцированного временным изменением внешнего магнитного поля.

Литература

- 1. C. P. Bean, Phys. Rev. Lett. 8, 250, 1962; Rev. Mod. Phys., 36, 31, 1964.
- 2. P. S. Swartz and S.P. Bean, J. Appl. Phys., 39, 4991, 1968.
- 3. S. L. Wipf, Cryogenics, 31, 936, 1961.
- 4. R. G. Mints, and A.L. Rakhmanov, Rev. Mod. Phys., 53, 551, 1981.
- 5. R. G. Mints and A.L. Rakhmanov, Instabilities in superconductors, Moscow, Nauka, 362, 1984.
- 6. A. M. Campbell and J. E. Evetts, Critical Currents in Superconductors (Taylor and Francis, London, 1972) Moscow, 1975.
- 7. L. Legrand, I. Rosenman, Ch. Simon, and G. Collin, Physica C, 211, 239, 1993.
- 8. A. Nabialek, M. Niewczas, Physica C, 436, 43, 2006.
- 9. N. A. Taylanov and A. Elmuradov, Technical Physics, 11, 48, 2003.
- 10.R. G. Mints, Phys. Rev., B 53, 12311, 1996.
- 11.R. G. Mints and E.H. Brandt, Phys. Rev., B 54, 12421, 1996.
- 12.P. W. Anderson, Y.B. Kim Rev. Mod. Phys., 36. 1964.
- 13.P. W. Anderson, Phys. Rev. Lett., 309, 317, 1962.
- 14.E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. J. Gambino, and M. W. McElfresh, Phys. Rev. Lett., 62, 3093, 1989.
- 15.P. H. Kes, J. Aarts, J. van der Berg, C.J. van der Beek, and J.A. Mydosh, Supercond. Sci. Technol., 1, 242, 1989.
- 16. Н.А. Тайланов. Узбекский Физический Журнал, Том 18, №4, 2016.
- 17.N.A. Taylanov. J. Mod. Phys. Appl. 2 (2013), No. 1, 51-58, ISSN 2051-5480.